室内半挥发性有机物(SVOCs) 传质与净化机理的研究

莫金汉

清华大学建筑技术科学系

室内空气质量评价与控制北京市重点实验室 清华大学建筑环境检测中心 2019年11月10日

SVOCs研究背景 SVOCs的发生方法

- 3. 气相SVOCs净化方法
- 4. SVOCs与颗粒物耦合污染净化尝试

世界卫生组织(WHO)对室内有机污染物的分类

VOC: Volatile Organic Compounds

- VVOC: Very ~ 极易
- SVOC: Semi- 半

有机物分类	沸点(℃)
极易挥发的有机化合物 (VVOC)	<0 到50~100
有机挥发性化合物 (VOC)	50~100 到240~260
半挥发性有机化合物 (SVOC)	240~260 到 380~ 400

SVOC和VOC性能比较

名称	VOC (例如甲苯)	SVOC(例如DEHP)	
沸点	很低(<50℃)、易挥发	很高(>250℃)、不易挥发	
p _{vap} (Pa)	高 (6.9× 10 ³)	低 (2.5× 10 -5)	
存在状态	绝大部分以气态存在 于室内空气 中	绝大部分吸附在室内材料、 物品内;或吸附在室内环 境的降尘或飘尘中	
比喻	像酒精	像猪油	

半挥发性有机物(SVOCs,沸点>250℃)极易与PM_{2.5}附着

问题: SVOCs与PM_{2.5}的复合污染是否危害更大? 形成机制不清晰

室内SVOCs主要可分两类

- ◆阻燃剂 (Flame retardant)
 - 为了防火;
 - 溴系和氯系阻燃剂具有持久的;

生物积累毒性;

- 部分是致癌物, 诱变物, 再生毒物。

◆增塑剂 (Plasticizer)

- 加入材料中以改进可塑性;
- 影响人体荷尔蒙系统,特别是对成长
 中的青少年生长和发育不利;
- 引起哮喘、鼻炎; 使啮类动物的肝脏 致癌。

from Dr. Blum

增塑剂

di-isononyl phthalate (DINP)

2006年全球增塑剂按地区消费比例

Wang LX, Zhang YP et al., Chinese Science Bulletin, 2013, 55(15): 1469-1478.

2006年世界增塑剂按品种消费比例

广泛存在于日常用品中

邻苯二甲酸二(2-乙基)己酯 **12**

Hermann Fromme, et al., *Environment International*, 2007. Evelina Fasano, et al., *Food Control*, 2012.

作为内分泌干扰素,主要导致慢性疾病

肥胖

生殖毒性

出生体重偏低, 早产

抗雄激素效应 肛门和生殖器距离过短 (AGD)

Lusting et al., <u>Nature</u>, 2006. Li et al. <u>EHP</u>, 2012; London et al., <u>EHP</u>, 2000; Hauser et al., <u>Occup Environ Med</u>, 2005; Swan et al., <u>Environ. Research</u>, 2008

国际著名期刊EHP(IF=8.443): SVOC引发哮喘、癌症和生殖疾病!

Bornehag et al., *Environ. Health Persp.*, 2004;Jaakkola et al., *Environ. Health Persp.*, 2006.

- 1. SVOCs研究背景 2. SVOCs的发生方法
- 3. 气相SVOCs净化方法
- 4. SVOCs与颗粒物耦合污染净化尝试

塑化剂暴露特征与界面处浓度紧密相关

稳定的SVOC发生源

Experimental conditions:

- Carrier gas: air
- Flow rate: 100 mL/min
- Air sampling: SPE column
- Concentration analysis : GC-MS

- Temperature states
 - Controlled (25.0 \pm 0.4 °C);
 - Uncontrolled (13.7 \pm 4.0 °C)
- Materials of porous media

14 ppi honeycomb ceramics

20 ppi carbon sponges

30 ppi carbon sponges

40 ppi carbon sponges

- Types of PAEs
 - **DMP**, **DiBP**, **DEHP**

• Influence of temperature and materials

Influence of temperature on vapor pressure

Phthalates		15 ° C	20 ° C	25 ° C
DMP	Vapor pressure (Pa)	1.11×10^{-2}	2.51×10^{-2}	5.67×10 ⁻²
	Saturated concentration (µg/m ³)	286.60	610.83	1335.63
DiBP	Vapor pressure (Pa)	9.50×10 ⁻⁵	2.19×10 ⁻⁴	5.09×10 ⁻⁴
	Saturated concentration ($\mu g/m^3$)	11.04	25.01	57.15
DEHP	Vapor pressure (Pa)	1.82×10^{-8}	5.11×10 ⁻⁸	1.42×10^{-7}
	Saturated concentration ($\mu g/m^3$)	0.0030	0.0082	0.022

SPARC on-line calculator (http://sparc.chem.uga.edu/sparc/)

Materials to guarantee stably generating

Straight tubes Cylindrical disturbed flow (more disturbance

honeycomb ceramics carbon sponges (HC) (CS) Hi

 $q_{m} = h_{m} A_{in} (y_{0} - \overline{y}_{g}) \quad h_{m,HC} < h_{m,CS}$

Higher concentration and more stable

• Influence of carbon sponges pore size

Generating DiBP and DEHP stably (t-test)

• Generating DiBP and DEHP repeatedly

Controlled temperature

• Test generating

• 30 ppi carbon sponges

performance twice: C₁, C₂

SVOCs研究背景 SVOCs的发生方法

3. 气相SVOCs净化方法

4. SVOCs与颗粒物耦合污染净化尝试

静电增强过滤去除颗粒物

Single-pass removal efficiency for particle can be enhanced

[1] Tian et al., *Energy and Buildings*, 2019.

Electrostatically assisted air (EAA) filtration^[1]:

Enhance the PAEs adsorption on filters through EAA filtration?

(Model 205, 2B Tech. Boulder, USA)

(DP-CALC5825, TSI Inc. Shoreview, USA)

浓度发生稳定性

入口浓度对效率的影响

Filters

(polyurethane)

(adsorbent)

PU+MnO₂ (catalyst)

结果分析 (PU+C滤料)

34

1. SVOCs研究背景 2. SVOCs的发生方法

3. 气相SVOCs净化方法

4. SVOCs与颗粒物耦合污染净化尝试

耦合污染源发生特性

39

SVOC引入对颗粒物静电增强过滤效率的影响

Thank you!